Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair.

نویسندگان

  • R E Miller
  • A J Grodzinsky
  • E J Vanderploeg
  • C Lee
  • D J Ferris
  • M F Barrett
  • J D Kisiday
  • D D Frisbie
چکیده

OBJECTIVE The goal of this study was to test the ability of an injectable self-assembling peptide (KLD) hydrogel with or without chondrogenic factors (CF) and allogeneic bone marrow stromal cells (BMSCs) to stimulate cartilage regeneration in a full-thickness, critically-sized, rabbit cartilage defect model in vivo. We used CF treatments to test the hypotheses that CF would stimulate chondrogenesis and matrix production by cells migrating into acellular KLD (KLD+CF) or by BMSCs delivered in KLD (KLD+CF+BMSCs). DESIGN Three groups were tested against contralateral untreated controls: KLD, KLD+CF, and KLD+CF+BMSCs, n=6-7. Transforming growth factor-β1 (TGF-β1), dexamethasone, and insulin-like growth factor-1 (IGF-1) were used as CF pre-mixed with KLD and BMSCs before injection. Evaluations included gross, histological, immunohistochemical and radiographic analyses. RESULTS KLD without CF or BMSCs showed the greatest repair after 12 weeks with significantly higher Safranin-O, collagen II immunostaining, and cumulative histology scores than untreated contralateral controls. KLD+CF resulted in significantly higher aggrecan immunostaining than untreated contralateral controls. Including allogeneic BMSCs+CF markedly reduced the quality of repair and increased osteophyte formation compared to KLD-alone. CONCLUSIONS These data show that KLD can fill full-thickness osteochondral defects in situ and improve cartilage repair as shown by Safranin-O, collagen II immunostaining, and cumulative histology. In this small animal model, the full-thickness critically-sized defect provided access to the marrow, similar in concept to abrasion arthroplasty or spongialization in large animal models, and suggests that combining KLD with these techniques may improve current practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold.

Tissue engineering of a biological osteochondral multilayered construct with a cartilage-interface subchondral bone layer is a key challenge. This study presented a rabbit bone marrow stromal cell (BMSC)/silk fibroin scaffold-based co-culture approach to generate tissue-engineered osteochondral grafts with an interface. BMSC-seeded scaffolds were first cultured separately in osteogenic and chon...

متن کامل

Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells.

Tissue engineering strategies for cartilage defect repair require technology for local targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was to determine the release kinetics of transforming growth factor β1 (TGF-β1) from self-assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate chondrogenesis of encapsulated ...

متن کامل

Repair of Spinal Cord Injury (SCI) Using Bone Marrow Stromal Cell Transfected with Adenoviral Vector Expressing Glial derived Neurotropic Factor (GDNF) in a Rat SCI Model

Back ground  Subsequent to spinal cord injury many pathological changes may occur that could lead to inappropriate environment for repair. The Most important of such changes is the death of neurons. Exogenous administration of growth factors that modulate neuronal survival, synaptic plasticity, and neurotransmission has been proposed as a potential therapeutic treatment for SCI. Among these gr...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

Influence of Kartogenin on Chondrogenic Differentiation of Human Bone Marrow-Derived MSCs in 2D Culture and in Co-Cultivation with OA Osteochondral Explant.

Articular cartilage has limited capacity for natural regeneration and repair. In the present study, we evaluated kartogenin (KGN), a bioactive small heterocyclic molecule, for its effect on in vitro proliferation and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSCs) in monolayer culture and in co-culture models in vitro. OA osteochondral cylinders and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Osteoarthritis and cartilage

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 2010